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ABSTRACT
General purpose graphic programming unit (GPGPU)
programming is a novel approach for solving parallel
variable independent problems. The graphic processor
core (GPU) gives the possibility to use multiple blocks,
each of which contains hundreds of threads. Each of
these threads can be visualized as a core onto itself,
and tasks can be simultaneously sent to all the threads
for parallel evaluations. This research explores the
advantages of applying a evolutionary algorithm (EA) on
the GPU in terms of computational speedups. Enhanced
Differential Evolution (EDE) is applied to the generic
permutative flowshop scheduling (PFSS) problem both
using the central processing unit (CPU) and the GPU,
and the results in terms of execution time is compared.

INTRODUCTION
During the later part of the past decade, a novel trend
emerged where programmers started using the Graphics
Processing Unit (GPU) for programming not graphic ap-
plications which usually was in the preview of the Cen-
tral Processing Unit (CPU). The reasoning behind such a
move was the possibility to achieving speedups of mag-
nitude compared to optimized CPU implementations.

GPU’s have evolved into fast, highly multi-threaded
processors, with hundreds of cores and thousands of con-
current threads. These threads which can be invoked si-
multaneously, provide an excellent platform for parallel
execution. A GPU is optimal when a problem has to be
executed many times, can be isolated as a function and
works independently on different data.

One of the most challenging and computational de-
manding problems in engineering are the NP-Hard prob-
lems. These problems are computationally intractable,
and often require the use of optimization algorithms.
This research attempts to solve the challenging flowshop
scheduling (FSS) problem using a novel Enhanced Dif-
ferential Evolution (EDE) algorithm utilizing GPU pro-
gramming.

One of the most widespread programming archi-
tectures is the Compute Unified Device Architecture
(CUDA) of Nvidia (NVIDIA, 2012). A number of re-
search has been conducted on GPU programming in-
volving evolutionary algorithms and these two architec-
tures. Tabu Search has been used for the evaluating
the FSS problem using CUDA by Czapinski and Barnes
(2011). Genetic Algorithms (GA) has been been used
to solve the traveling salesman problem by Chen et al.
(2011), whereas a parallel GA approach has been done
by Pospichal et al. (2010). The particle swarm algo-
rithm has also been modified to be used by CUDA Mussi
et al. (2011). More interestingly Genetic Programming
has also found a niche in GPU programming (Robilliard
et al., 2009).

This research utilizes the Nvidia CUDA framework for
GPU computation. The enhanced Differential Evolution
(EDE) (Davendra and Onwubolu, 2009) is modified to
the GPU framework and execution time for both the GPU
and CPU variants are compared.

This paper follows the following structure. Section 1
outlines the CUDA framework and syntax. Section 2
describes Differential Evolution (DE) and the EDE al-
gorithms. The problem attempted in this research; flow
shop scheduling is given in Section 3. Section 4 describes
the code design on the GPU, whereas the experimenta-
tion and analysis (Section 5) compares the obtained re-
sults. The paper is concluded in Section 6.
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1 CUDA

The Compute Unified Device Architecture (CUDA) is a
propriety parallel computing architecture developed by
Nvidia Corporation and released in November 2006. The
main objective for this was to introduce general program-
ming to the GPU, in the effort to scale up raw processing
power.

The CUDA API (both low level and high level) pro-
vides a platform for accessing the Nvidia GPU for pro-
cessing. This allowed a programmer to bypass the tra-
ditional OpenGL or Direct3D techniques which were
needed to program the chips. Additionally, and most im-
portantly, C language can now be used to program for
CUDA, through the PathScale Open64 C compiler. This
has essentially introduced CUDA for mainstream pro-
grammers (Sanders and E.Kandrot, 2010).

The general outline of CUDA is given in Fig 1. The
CPU is able to communicate with the GPU using the
PCIe bus, and therefore the communication speed is lim-
ited by the bus speed. A GPU itself has a number of at-
tributes. The GPU is made up of a number of blocks.
Each block is subsequently divided into a number of
threads. Each block has its own shared memory and reg-
isters, which can be accessed by all the threads residing
in that particular block. All blocks can access the global
memory and the shared memory of the GPU. The min-
imum applicable amount of blocks available is 65,535,
and each block has 512 threads each. CUDA process-
ing cores are referred to as kernels, which are launched
from the CPU. Kernels can be made up of any combina-
tions of blocks and threads, depending on the application
(Kirk and Hwu., 2010).
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Figure 1: CUDA outline.

There are many types of memory, differing in size, vis-
ibility, access time and whether it is cached and write-
able. Below is the description of each memory type, its
capabilities and purpose.

1. Global memory is used for communication between
host and device, therefore it is accessible from
blocks (directly), and CPU (through API). It is the
largest memory space available on GPU, but it is the

slowest at the same time.

2. Shared memory is a very fast on-chip memory,
available for both reading and writing, but only ac-
cessible by threads within the same block. Unfor-
tunately, it is also small with a maximum of 16,384
bytes per block.

3. Constant memory is accessible as global memory,
but it is cached in the case of a cache miss, a read op-
eration takes the same time as reading from global
memory, otherwise it is much faster.

4. Registers are the fastest on chip memory used for
threads automatic variables. The number of 32-
bit registers on each multiprocessor is limited up to
16,384, therefore if each thread requires too many
registers, the number of blocks executed on each
multiprocessor is reduced.

5. Local memory is a local per thread memory, used for
large automatic variables (e.g. arrays or large struc-
tures) that will not fit in registers. It is not cached,
and is as slow as global memory.

1.1 CUDA syntax

A brief outline of the CUDA syntax is presented.
Memory allocation of dynamic variables is given as:
cudaMalloc((void**)&GPUvarible,(size)*
sizeof(type));, where GPUvariable is the name,
type is the datatype and size refers to the total size being
allocated.

Data is passed from the CPU
to the kernels in the GPU using
cudaMemcpy(GPUvariable,CPUvariable,(si
ze)*sizeof(type),#cudaMemcpyHostToDev
ice);. This copies the data from the CPUvariable to
the GPUvariable.

The kernel is launched using the following syntax
kernel<<<dim3 grid, dim3 block>>>(...),
where dim3 is the built in device variable.
dim3 gridDim refers to the number of dimen-
sion of the grid in blocks whereas dim3 blockDim
is the dimension of the blocks in threads. Within the
kernel, the block index is given by dim3 blockIdx
and the thread index is given by dim3 threadIdx.

After execution on the GPU kernels,
the data is read back to the CPU as
cudaMemcpy(CPUvariable,GPUvariable,(si
ze)*sizeof(type),cudaMemcpyDeviceToHost);.
This commands copies the data from the GPUvariable
to the CPUvariable. The CUDA procedural outline is
shown in Fig 2

2 DIFFERENTIAL EVOLUTION

Developed by Price and Storn (Price, 1999), Differen-
tial Evolution (DE) algorithm is a very robust and ef-
ficient approach to solve continuous optimization prob-



Memory Allocation
    int *GPUvariable
    cudaMalloc((void**)&GPUvariable,(size)*sizeof(type));
    
Kernel Parameter Passing
� cudaMemcpy(GPUvariable,CPUvaribale,(size)*sizeof(type),
� � � � cudaMemcpyHostToDevice);

GPU kernel Allocation
    dim3 grid, block; 
    
Execution
    kernal<<<dim3 grid,dim3 block>>>(GPUvariable);
    
Read Back
    cudaMemcpy(CPUvariable,GPUvaribale,(size)*sizeof(type),
    � � � cudaMemcpyDeviceToHost);
    
Release Memory
� cudaFree(GPUvariable);

Figure 2: Generic CUDA template

lems. One of the core features of DE is that it uses a
vector perturbation methodology for crossover.

Each solution is visualized as a vector in search space.
A new vector is created by the combination of four
unique vectors. A schematic of DE is given in Fig. 3.
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Figure 3: DE selection

2.1 Enhanced Differential Evolution outline

Enhanced Differential Evolution (EDE) (Davendra and
Onwubolu, 2007), heuristic is an extension of the canon-
ical DE developed for the task of permutative based com-
binatorial optimization. The basic outline is given in Fig
4.

EDE operates on a permutative set of individuals.
These individuals are transformed to a real number using
the forward transformation. The DE strategy can then be
applied to the real domain values. Once the DE crossover
and mutation routines have finished, the resulting vector
is transformed back into the permutative individual using
the backward transformation. The new trial individual
is then randomly repaired, and its objective function cal-
culated. The local search is utilized when stagnation is
detected in the population. The detailed description of
the EDE approach is given in Davendra and Onwubolu
(2009).

1. Initial Phase

(a) Population Generation: An initial number of
discrete trial solutions are generated for the
initial population.

2. Conversion

(a) Forward transformation: This conversion
schema transforms the parent solution into the
required continuous solution.

(b) DE Strategy: The DE strategy transforms the
parent solution into the child solution using its
inbuilt crossover and mutation schemas.

(c) Backward Transformation: This conversion
schema transforms the continuous child solu-
tion into a discrete solution.

3. Mutation

(a) Relative Mutation Schema: Formulates the
child solution into the discrete solution of
unique values.

4. *Local Search

(a) Local Search: 2 Opt local search is used to
explore the neighborhood of the solution.

Figure 4: EDE outline

3 PERMUTATIVE FLOWSHOP SCHEDULING
PROBLEM

In many manufacturing and assembly facilities, a number
of operations have to be done on every job. Often these
operations have to be done on all the jobs in the same
order implying the jobs have to follow the same route.
The machines are assumed to be set up in series and the
environment is referred to as a flow shop (Pinedo, 1995).

Flow Shop Fm: There are m machines in series. Each
job has be processed in each one of the m machines. All
the jobs have to follow the same route (i.e., they have to
processed on Machine 1, and then on Machine 2, etc).
After completing on one machine, a job joins the queue
at the next machine. Usually all jobs are assumed to op-
erate under the First In First Out (FIFO) discipline - that
is a job cannot “pass” another while waiting in a queue.
Under this effect the environment is refereed to as a per-
mutative flow shop. the general syntax of this problem as
described in the triplet format α|β|γ, is given as

Fm |Perm |Cmax

The first field denotes the problem being solved, the sec-
ond field the type of problem (in this case permutative)
and the last field denotes the objective being under in-
vestigation, which is the makespan (total time taken to



complete the job).
Stating these problem descriptions more elaborately,

the minimization of completion time (makespan) for a
flow shop schedule is equivalent to minimizing the ob-
jective function !:

! =
n∑

j=1

Cm,j (1)

s.t.

Ci,j = max (Ci−1,j , Ci,j−1) + Pi,j (2)

where, Cm,j = the completion time of job j, Ci,j = k

(any given value), Ci,j =
j∑

k=1
C1,k ; Ci,j =

j∑
k=1

Ck,1

machine number, j job in sequence, Pi,j processing time
of job j on machine i. For a given sequence, the mean

flow time, MFT = 1
n

m∑
i=1

n∑
j=1

cij , while the condition

for tardiness is cm,j > dj . The constraint of Equation 2
applies to these two problem descriptions.

The value of the makespan under a given permutation
schedule can also be computed by determining the criti-
cal path in a directed graph corresponding to the sched-
ule.

For a given sequence j1, .., jn , the graph is con-
structed as follows: For each operation of a specific job
jk on a specific machine i, there is a node (i, jk) with
the processing time for that job on that machine. Node
(i, jk), i = 1, ...,m − 1 and k = 1, ...., n − 1 , has arcs
going to nodes (i+ 1, jk) and (i, jk+1). Nodes corre-
sponding to machine m have only one outgoing arc, as
do the nodes in job jn. Node (m, jn), has no outgoing
arcs as it is the terminating node and the total weight of
the path from first to last node is the makespan for that
particular schedule (Pinedo, 1995). A schematic is given
in Fig 5.
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Figure 5: Directed graph representation for
Fm |Perm |Cmax

The pseudocode of the routine as coded in the GPU
kernel is given in Fig 6.

Algorithm for Flow shop scheduling on the GPU

Assume a problem of size n, and a schedule given as
X = {x1, .., xn}. Assume the problem matrix as R,
which is of size n by m (job and machine) and the so-
lution array as Y of size m.

1. For i = 1, 2, ...., n do the following:

(a) For j = 1, 2, ....,m do the following:

i. IF i = 1

A. Yi =
∑i−1

i=1 Yi +RXi,j

ii. ELSE

A. IF i = 1
Y1 = Y1 +RX1,1

B. ELSE
Yj = max(Yj , Yj−1) +RXi,j

2. Output Ym as the objective function.

Figure 6: Pseudocode for Flow shop scheduling

4 CODE DESIGN ON THE GPU

In an evolutionary algorithm, the most time and proces-
sor consuming task is the objective function calculation.
This amounts to almost 80% of the execution time (Cza-
pinski and Barnes, 2011). Therefore it is logical to uti-
lize the GPU for this task, providing that it can be paral-
lelized.

The major drawback for such a approach is the allo-
cation of memory on the GPU. By rule, the GPU cannot
allocate memory dynamically, therefore all dynamically
allocated memory has to be assigned in the CPU. This
makes all these memories as global memory, which is
the slowest. Also, sufficient memory has to be allocated
for the calculation itself.

This research uses the GPU only for objective func-
tion calculation. The outline is given in Fig 7. A number
of parameters have to be passed to the GPU as given in
Table 1. These include three individual items; Machine
size (m), Job size (n) and Population size (p). The popu-
lation, problem data and calculation matrix also have to
be passed to the GPU. The calculation matrix is required
for the calculation of the makespan.

As most of the data is assigned as global memory, and
only population size of 100 is used for all simulations, the
kernels allocated are to only blocks. All internal mem-
ory allocation (loop indexes etc) have been allocated as
shared memory. At the first initialization, all the data is
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Figure 7: Conceptual outline.

Table 1: Parameters passed to the GPU

Parameters Type Size

Machine size (m) int sizeof (int)
Job size (n) int sizeof (int)
Population size (p) int sizeof (int)
Problem data int (m · n) · sizeof (int)
Population int (p · n) · sizeof (int)
Calculation matrix int (p · m) · sizeof (int)
Objective function int p · sizeof (int)

passed to the GPU. After execution of the GPU, only the
population and objective function matrix is returned to
the CPU. Thereafter, within the generation loop, only the
population and objective function matrix are passed to
and from the GPU.

The experiment involves the embedding of the 2-opt
local search on each trial solution. Therefore the com-
plexity of this routine on each kernel is a minimum of
O
(
n2

)
.

5 EXPERIMENTATION

The main objective of this research is to validate the ap-
plication of using a GPU for general purpose program-
ming. In terms of performance measurement of any al-
gorithm, the execution time is the key indicator, as all
other measurement criteria are tied to it.

Table 2: Parameters passed to the GPU

Parameters Value

Population 100
Generations 100
CR 0.9
F 0.5
Strategy DE/best/2/bin

Table 3: Processing time for CUDA and CPU

Instance CUDA CPU ∆avg

20 x 5 1.72 26.84 1460.46
20 x 10 2.53 63.05 2392.09
20 x 20 4.16 111.85 2588.7
50 x 5 19.87 209.46 954.15
50 x 10 28.87 1483.19 5037.47
50 x 20 50.20 3483.48 6839.2
100 x 5 151.31 4600.52 2940.45
100 x 10 246.75 5988.96 2327.14
100 x 20 387.26 7545.46 1848.42
200 x 10 2052.62 15548.67 657.48
200 x 20 3237.77 25572.84 689.82
500 x 20 8783.75 44682.3 408.69

Average 1247.56 9109.69 2345.34

The experiment design was to apply the EDE code uti-
lizing the local search on each fitness calculation, firstly
on the CPU and then on the GPU and measure the time
taken to complete the experimentation with fixed operat-
ing parameters.

The operating parameters for EDE is given in Table 2.
The operating system utilized for this experiment was

a Nvidia Tesla C2050 graphics processing unit. It has
1 GPU core with 3072MB RAM memory, 575MHz core
clock speed, version 2 of the CUDA core architecture and
supports double precision. This hardware is part of the
Media Research Lab (MRL) at the Technical University
of Ostrava (MRL, 2012).

The experimentation results are given in Table 3. The
average improvement ∆avg of the GPU executed EDE
over the CPU version is calculated as given in Equation
3.

∆avg =
(CPU −GPU)× 100

CPU
(3)

From the results, it can be easily established that the
CUDA based EDE is a faster executing algorithm, how-
ever the scale of improvement is quite substantial for
medium and larger sized problems. For each problem
set, there is a significant improvement for the GPU exe-
cution time. The total average improvement of the GPU
is 2345.34 over the CPU. The average execution time is
1247.56 sec on the GPU compared to 9109.69 on the
CPU. Therefore, we can conclude that the execution is



on a magnitude of eight times faster on the GPU. The
results are displayed in Fig 8.
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Figure 8: Graph of CUDA vs CPU processing time.

6 CONCLUSION

With the advent of faster processors, it becomes feasible
to improve the structure of algorithms in order to har-
ness this new power. With the application of GPGPU
based applications gaining a foothold in computational
analysis, this research aims to answer the question as to
weather it is feasible to spend the necessary resources to
convert algorithms to a GPU framework.

From the results obtained during this research, it is
very clear that CUDA based EDE is a vast improvement
over the CPU based variant in terms of execution time.
The improvement is quite substantial, which in turn gives
the scope of further optimization of the algorithm based
on memory management.

The major fallibility of using the GPU is the time taken
to transfer the data using the PCIe bus, which has a fixed
bus speed. The next iteration of this research is the port-
ing of the EDE routines to the GPU itself, thus minimiz-
ing the transfer time.
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